Graph Structure Learning: Reflecting Types of Relationships between Sensors in Multivariate Time Series Anomaly Detection
Vol. 51, No. 3, pp. 236-243, Mar. 2024

Abstract
Statistics
Cumulative Counts from November, 2022
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
|
Cite this article
[IEEE Style]
M. Park and M. Kim, "Graph Structure Learning: Reflecting Types of Relationships between Sensors in Multivariate Time Series Anomaly Detection," Journal of KIISE, JOK, vol. 51, no. 3, pp. 236-243, 2024. DOI: 10.5626/JOK.2024.51.3.236.
[ACM Style]
Minjae Park and Myoungho Kim. 2024. Graph Structure Learning: Reflecting Types of Relationships between Sensors in Multivariate Time Series Anomaly Detection. Journal of KIISE, JOK, 51, 3, (2024), 236-243. DOI: 10.5626/JOK.2024.51.3.236.
[KCI Style]
박민재, 김명호, "다변량 시계열 이상 탐지에서의 센서 간 관계 유형을 반영하는 그래프 구조 학습," 한국정보과학회 논문지, 제51권, 제3호, 236~243쪽, 2024. DOI: 10.5626/JOK.2024.51.3.236.
[Endnote/Zotero/Mendeley (RIS)] Download
[BibTeX] Download
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr