Search : [ author: Charmgil Hong ] (2)

Improving Prediction of Chronic Hepatitis B Treatment Response Using Molecular Embedding

Jihyeon Song, Soon Sun Kim, Ji Eun Han, Hyo Jung Cho, Jae Youn Cheong, Charmgil Hong

http://doi.org/10.5626/JOK.2024.51.7.627

Chronic hepatitis B patients with no timely treatment are at a high risk of developing complications such as liver cirrhosis and hepatocellular carcinoma (liver cancer). As a result, various antiviral agents for hepatitis B have been developed, and due to the different components of these antiviral agents, there can be variations in treatment responses among patients. Therefore, selecting the appropriate medication that leads to a favorable treatment response is considered crucial. In this study, in addition to the patient's blood test results and electronic medical records indicating drug prescriptions, information about components of the hepatitis B antiviral agents was incorporated for learning. The aim was to enhance the prediction performance of treatment responses one year after chronic hepatitis B patients' treatment. Molecular embedding of the antiviral agents included both fixed molecular embedding and those generated through an end-to-end structure utilizing a graph neural network model. By comparing with the baseline model, drug molecule embedding was confirmed to contribute to improving performance.

Vehicle Image Data Augmentation by GAN-based Viewpoint Transformation

Hangyel Sun, Myeonghee Lee, Charmgil Hong, Injung Kim

http://doi.org/10.5626/JOK.2021.48.8.885

We introduce a novel GAN-based image synthesis method that transforms vehicle images captured from arbitrary viewpoints into images taken from a specific viewpoint. Training a vehicle image recognizer requires a large number of vehicle images taken from a specific viewpoint. However, in practice, it is difficult to collect such training data, especially for newly released vehicles. Therefore, we propose a method of augmenting vehicle image data by converting a vehicle image from an arbitrary viewpoint into an image from a specific viewpoint. The proposed method first transforms a vehicle image from an arbitrary viewpoint to an image taken from the top-front view using DRGAN, then enhances the image quality with DeblurGAN, and finally, improves the resolution using SRGAN. The experimental results demonstrated that the proposed method successfully converted an image taken within 45 degrees left and right into an image from the top-frontal view and was effective in improving the image quality and resolution.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

Editorial Office

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr