Search : [ author: Youngjoong Ko ] (22)

Effective Korean Speech-act Classification Using the Classification Priority Application and a Post-correction Rules

Namhoon Song, Kyoungman Bae, Youngjoong Ko

http://doi.org/

A speech-act is a behavior intended by users in an utterance. Speech-act classification is important in a dialogue system. The machine learning and rule-based methods have mainly been used for speech-act classification. In this paper, we propose a speech-act classification method based on the combination of support vector machine (SVM) and transformation-based learning (TBL). The user"s utterance is first classified by SVM that is preferentially applied to categories with a low utterance rate in training data. Next, when an utterance has negative scores throughout the whole of the categories, the utterance is applied to the correction phase by rules. The results from our method were higher performance over the baseline system long with error-reduction.

Building a Korean-English Parallel Corpus by Measuring Sentence Similarities Using Sequential Matching of Language Resources and Topic Modeling

JuRyong Cheon, YoungJoong Ko

http://doi.org/

In this paper, to build a parallel corpus between Korean and English in Wikipedia. We proposed a method to find similar sentences based on language resources and topic modeling. We first applied language resources(Wiki-dictionary, numbers, and online dictionary in Daum) to match word sequentially. We construct the Wiki-dictionary using titles in Wikipedia. In order to take advantages of the Wikipedia, we used translation probability in the Wiki-dictionary for word matching. In addition, we improved the accuracy of sentence similarity measuring method by using word distribution based on topic modeling. In the experiment, a previous study showed 48.4% of F1-score with only language resources based on linear combination and 51.6% with the topic modeling considering entire word distributions additionally. However, our proposed methods with sequential matching added translation probability to language resources and achieved 9.9% (58.3%) better result than the previous study. When using the proposed sequential matching method of language resources and topic modeling after considering important word distributions, the proposed system achieved 7.5%(59.1%) better than the previous study.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

Editorial Office

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr