Digital Library[ Search Result ]
Face Detection using Orientation(In-Plane Rotation) Invariant Facial Region Segmentation and Local Binary Patterns(LBP)
Hee-Jae Lee, Ha-Young Kim, David Lee, Sang-Goog Lee
http://doi.org/10.5626/JOK.2017.44.7.692
Face detection using the LBP based feature descriptor has issues in that it can not represent spatial information between facial shape and facial components such as eyes, nose and mouth. To address these issues, in previous research, a facial image was divided into a number of square sub-regions. However, since the sub-regions are divided into different numbers and sizes, the division criteria of the sub-region suitable for the database used in the experiment is ambiguous, the dimension of the LBP histogram increases in proportion to the number of sub-regions and as the number of sub-regions increases, the sensitivity to facial orientation rotation increases significantly. In this paper, we present a novel facial region segmentation method that can solve in-plane rotation issues associated with LBP based feature descriptors and the number of dimensions of feature descriptors. As a result, the proposed method showed detection accuracy of 99.0278% from a single facial image rotated in orientation.
Detection of Faces with Partial Occlusions using Statistical Face Model
Face detection refers to the process extracting facial regions in an input image, which can improve speed and accuracy of recognition or authorization system, and has diverse applicability. Since conventional works have tried to detect faces based on the whole shape of faces, its detection performance can be degraded by occlusion made with accessories or parts of body. In this paper we propose a method combining local feature descriptors and probability modeling in order to detect partially occluded face effectively. In training stage, we represent an image as a set of local feature descriptors and estimate a statistical model for normal faces. When the test image is given, we find a region that is most similar to face using our face model constructed in training stage. According to experimental results with benchmark data set, we confirmed the effect of proposed method on detecting partially occluded face.
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr