@article{M2118D1FB, title = "Parallel Computation of Order-Preserving Periods and Order-Preserving Borders of a Set of Strings", journal = "Journal of KIISE, JOK", year = "2019", issn = "2383-630X", doi = "10.5626/JOK.2019.46.12.1232", author = "Youngho Kim,Jeong Seop Sim", keywords = "GPU,order-preserving pattern matching,order-preserving periods,order-preserving borders,parallel algorithm", abstract = "Given two strings of the same length over an integer alphabet, those two strings are order-isomorphic when they have the same relative ranks. When strings order-isomorphic to T[1..p](1 ≤ p ≤ n) are periodically repeated in T, a representation of the order relations of T[1..p] is referred to as an order-preserving period of T. When a prefix T[1..q] (1 ≤ q ≤ n) of T is order-isomorphic to a suffix T[n-q+1..n] of T, a representation of the order relations of T[1..q] is called an order-preserving border of T. The lengths of all order-preserving periods (resp. all order-preserving borders) of T can be computed in O(n logn) time using the Z-function. Given a set Ŝ={S₁, S₂,..., Sr}of strings of length n over an integer alphabet, we propose parallel algorithms computing the lengths of all order-preserving periods and all order-preserving borders of Ŝ using O(rn) threads in O(n) time by the Z-function. When compared to each sequential algorithm for Dow Jones Industrial Average, the experimental results show that our parallel algorithm for computing the lengths of all order-preserving periods (resp. all order-preserving borders) of Ŝ runs approximately 3.47 (resp. 3.41) times faster when r =1,000, n =10,000." }