Social Network Spam Detection using Recursive Structure Features
Vol. 44, No. 11, pp. 1231-1235, Nov. 2017

Abstract
Statistics
Cumulative Counts from November, 2022
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
|
Cite this article
[IEEE Style]
B. Jang, S. Jeong, C. Kim, "Social Network Spam Detection using Recursive Structure Features," Journal of KIISE, JOK, vol. 44, no. 11, pp. 1231-1235, 2017. DOI: 10.5626/JOK.2017.44.11.1231.
[ACM Style]
Boyeon Jang, Sihyun Jeong, and Chongkwon Kim. 2017. Social Network Spam Detection using Recursive Structure Features. Journal of KIISE, JOK, 44, 11, (2017), 1231-1235. DOI: 10.5626/JOK.2017.44.11.1231.
[KCI Style]
장보연, 정시현, 김종권, "소셜 네트워크 상에서의 재귀적 네트워크 구조 특성을 활용한 스팸탐지 기법," 한국정보과학회 논문지, 제44권, 제11호, 1231~1235쪽, 2017. DOI: 10.5626/JOK.2017.44.11.1231.
[Endnote/Zotero/Mendeley (RIS)] Download
[BibTeX] Download
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr