Multi-sense Word Embedding to Improve Performance of a CNN-based Relation Extraction Model
Vol. 45, No. 8, pp. 816-824, Aug. 2018

Abstract
Statistics
Cumulative Counts from November, 2022
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
|
Cite this article
[IEEE Style]
S. Nam, K. Han, E. Kim, S. Kwon, Y. Jung, K. Choi, "Multi-sense Word Embedding to Improve Performance of a CNN-based Relation Extraction Model," Journal of KIISE, JOK, vol. 45, no. 8, pp. 816-824, 2018. DOI: 10.5626/JOK.2018.45.8.816.
[ACM Style]
Sangha Nam, Kijong Han, Eun-kyung Kim, Sunggoo Kwon, Yoosung Jung, and Key-Sun Choi. 2018. Multi-sense Word Embedding to Improve Performance of a CNN-based Relation Extraction Model. Journal of KIISE, JOK, 45, 8, (2018), 816-824. DOI: 10.5626/JOK.2018.45.8.816.
[KCI Style]
남상하, 한기종, 김은경, 권성구, 정유성, 최기선, "CNN 기반 관계 추출 모델의 성능 향상을 위한 다중-어의 단어 임베딩 적용," 한국정보과학회 논문지, 제45권, 제8호, 816~824쪽, 2018. DOI: 10.5626/JOK.2018.45.8.816.
[Endnote/Zotero/Mendeley (RIS)] Download
[BibTeX] Download
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr