Automatic Segmentation of Renal Parenchyma using Shape and Intensity Information based on Multi-atlas in Abdominal CT Images
Vol. 45, No. 9, pp. 937-942, Sep. 2018

-
computed tomography (CT) renal parenchyma multi-atlas segmentation locally weighted voting shape-prediction map
Abstract
Statistics
Cumulative Counts from November, 2022
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
|
Cite this article
[IEEE Style]
H. Kim, H. Hong, K. Chang, K. H. Rha, "Automatic Segmentation of Renal Parenchyma using Shape and Intensity Information based on Multi-atlas in Abdominal CT Images," Journal of KIISE, JOK, vol. 45, no. 9, pp. 937-942, 2018. DOI: 10.5626/JOK.2018.45.9.937.
[ACM Style]
Hyeonjin Kim, Helen Hong, Kidon Chang, and Koon Ho Rha. 2018. Automatic Segmentation of Renal Parenchyma using Shape and Intensity Information based on Multi-atlas in Abdominal CT Images. Journal of KIISE, JOK, 45, 9, (2018), 937-942. DOI: 10.5626/JOK.2018.45.9.937.
[KCI Style]
김현진, 홍헬렌, 장기돈, 나군호, "복부 CT 영상에서 다중 아틀라스 기반 형상 및 밝기값 정보를 사용한 신실질 자동 분할," 한국정보과학회 논문지, 제45권, 제9호, 937~942쪽, 2018. DOI: 10.5626/JOK.2018.45.9.937.
[Endnote/Zotero/Mendeley (RIS)] Download
[BibTeX] Download
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr