Learning Disentangled Representation of Web Addresses via Convolutional-Recurrent Triplet Network for Phishing URL Classification
Vol. 48, No. 2, pp. 147-153, Feb. 2021

-
phishing URL classification convolutional-recurrent triplet network deep metric learning cyber-security
Abstract
Statistics
Cumulative Counts from November, 2022
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
|
Cite this article
[IEEE Style]
S. Bu and H. Kim, "Learning Disentangled Representation of Web Addresses via Convolutional-Recurrent Triplet Network for Phishing URL Classification," Journal of KIISE, JOK, vol. 48, no. 2, pp. 147-153, 2021. DOI: 10.5626/JOK.2021.48.2.147.
[ACM Style]
Seok-Jun Bu and Hae-Jung Kim. 2021. Learning Disentangled Representation of Web Addresses via Convolutional-Recurrent Triplet Network for Phishing URL Classification. Journal of KIISE, JOK, 48, 2, (2021), 147-153. DOI: 10.5626/JOK.2021.48.2.147.
[KCI Style]
부석준, 김혜정, "피싱 URL 분류를 위한 컨볼루션-순환 트리플렛 신경망 기반 웹주소 특징공간의 학습," 한국정보과학회 논문지, 제48권, 제2호, 147~153쪽, 2021. DOI: 10.5626/JOK.2021.48.2.147.
[Endnote/Zotero/Mendeley (RIS)] Download
[BibTeX] Download
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr