Improving False Positive Rate of Extended Learned Bloom Filters Using Grid Search
Vol. 49, No. 1, pp. 78-88, Jan. 2022

-
data structure Bloom Filter learned bloom filter learned hash function learned index Machine Learning Neural Network False Positive Rate Grid Search Hyperparameter
Abstract
Statistics
Cumulative Counts from November, 2022
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
|
Cite this article
[IEEE Style]
S. Yang and H. Kim, "Improving False Positive Rate of Extended Learned Bloom Filters Using Grid Search," Journal of KIISE, JOK, vol. 49, no. 1, pp. 78-88, 2022. DOI: 10.5626/JOK.2022.49.1.78.
[ACM Style]
Soohyun Yang and Hyungjoo Kim. 2022. Improving False Positive Rate of Extended Learned Bloom Filters Using Grid Search. Journal of KIISE, JOK, 49, 1, (2022), 78-88. DOI: 10.5626/JOK.2022.49.1.78.
[KCI Style]
양수현, 김형주, "격자 탐색을 통한 확장 학습 블룸 필터의 거짓 양성 비율 개선," 한국정보과학회 논문지, 제49권, 제1호, 78~88쪽, 2022. DOI: 10.5626/JOK.2022.49.1.78.
[Endnote/Zotero/Mendeley (RIS)] Download
[BibTeX] Download
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr