다중 양식의 시각 데이터와 합성 신경망 기반의 오토인코더를 활용한 디자인권 침해 여부 판독 기술
49권 2호, pp. 137-144, 2월 2022

요약
통계
2022년 11월부터 누적 집계
동일한 세션일 때 여러 번 접속해도 한 번만 카운트됩니다. 그래프 위에 마우스를 올리면 자세한 수치를 확인하실 수 있습니다.
동일한 세션일 때 여러 번 접속해도 한 번만 카운트됩니다. 그래프 위에 마우스를 올리면 자세한 수치를 확인하실 수 있습니다.
|
논문 참조
[IEEE Style]
J. Kim, J. Seo, C. Lee, S. Jo, S. Kim, S. Yoon, Y. Yoon, "Detecting Design Infringement Using Multi-Modal Visual Data and Auto Encoder based on Convolutional Neural Network," Journal of KIISE, JOK, vol. 49, no. 2, pp. 137-144, 2022. DOI: 10.5626/JOK.2022.49.2.137.
[ACM Style]
Jeonggeol Kim, Jiyou Seo, Chanjae Lee, Seongmin Jo, Seungmin Kim, Seokmin Yoon, and Young Yoon. 2022. Detecting Design Infringement Using Multi-Modal Visual Data and Auto Encoder based on Convolutional Neural Network. Journal of KIISE, JOK, 49, 2, (2022), 137-144. DOI: 10.5626/JOK.2022.49.2.137.
[KCI Style]
김정걸, 서지유, 이찬재, 조성민, 김승민, 윤석민, 윤영, "다중 양식의 시각 데이터와 합성 신경망 기반의 오토인코더를 활용한 디자인권 침해 여부 판독 기술," 한국정보과학회 논문지, 제49권, 제2호, 137~144쪽, 2022. DOI: 10.5626/JOK.2022.49.2.137.
[Endnote/Zotero/Mendeley (RIS)] Download
[BibTeX] Download