COVID-19 Virus Whole-genome Embedding Strategy through Density-based Clustering and Deep Learning Model
Vol. 49, No. 4, pp. 261-270, Apr. 2022

Abstract
Statistics
Cumulative Counts from November, 2022
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
|
Cite this article
[IEEE Style]
M. Pak, S. Lee, I. Sung, Y. Shin, I. Jung, S. Kim, "COVID-19 Virus Whole-genome Embedding Strategy through Density-based Clustering and Deep Learning Model," Journal of KIISE, JOK, vol. 49, no. 4, pp. 261-270, 2022. DOI: 10.5626/JOK.2022.49.4.261.
[ACM Style]
Minwoo Pak, Sangseon Lee, Inyoung Sung, Yunyol Shin, Inuk Jung, and Sun Kim. 2022. COVID-19 Virus Whole-genome Embedding Strategy through Density-based Clustering and Deep Learning Model. Journal of KIISE, JOK, 49, 4, (2022), 261-270. DOI: 10.5626/JOK.2022.49.4.261.
[KCI Style]
박민우, 이상선, 성인영, 신윤열, 정인욱, 김선, "밀도기반 군집화와 딥러닝 모델을 이용한 COVID-19 바이러스 전장 유전체 임베딩 전략," 한국정보과학회 논문지, 제49권, 제4호, 261~270쪽, 2022. DOI: 10.5626/JOK.2022.49.4.261.
[Endnote/Zotero/Mendeley (RIS)] Download
[BibTeX] Download
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr