A Dimension Reduction Method for Unsupervised Outlier Detection in High Dimensional Data
Vol. 49, No. 7, pp. 537-543, Jul. 2022

Abstract
Statistics
Cumulative Counts from November, 2022
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
|
Cite this article
[IEEE Style]
C. H. Park, "A Dimension Reduction Method for Unsupervised Outlier Detection in High Dimensional Data," Journal of KIISE, JOK, vol. 49, no. 7, pp. 537-543, 2022. DOI: 10.5626/JOK.2022.49.7.537.
[ACM Style]
Cheong Hee Park. 2022. A Dimension Reduction Method for Unsupervised Outlier Detection in High Dimensional Data. Journal of KIISE, JOK, 49, 7, (2022), 537-543. DOI: 10.5626/JOK.2022.49.7.537.
[KCI Style]
박정희, "고차원 데이터에서 무감독 이상치 탐지를 위한 차원 축소 방법," 한국정보과학회 논문지, 제49권, 제7호, 537~543쪽, 2022. DOI: 10.5626/JOK.2022.49.7.537.
[Endnote/Zotero/Mendeley (RIS)] Download
[BibTeX] Download
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr