R-FLHE: Robust Federated Learning Framework Against Untargeted Model Poisoning Attacks in Hierarchical Edge Computing
Vol. 50, No. 1, pp. 94-102, Jan. 2023

Abstract
Statistics
Cumulative Counts from November, 2022
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
|
Cite this article
[IEEE Style]
J. Kim and J. Lee, "R-FLHE: Robust Federated Learning Framework Against Untargeted Model Poisoning Attacks in Hierarchical Edge Computing," Journal of KIISE, JOK, vol. 50, no. 1, pp. 94-102, 2023. DOI: 10.5626/JOK.2023.50.1.94.
[ACM Style]
Jeehu Kim and Jaewoo Lee. 2023. R-FLHE: Robust Federated Learning Framework Against Untargeted Model Poisoning Attacks in Hierarchical Edge Computing. Journal of KIISE, JOK, 50, 1, (2023), 94-102. DOI: 10.5626/JOK.2023.50.1.94.
[KCI Style]
김지후, 이재우, "R-FLHE: 계층적 엣지 컴퓨팅에서 비표적 모델 중독 공격에 강건한 연합학습 프레임워크," 한국정보과학회 논문지, 제50권, 제1호, 94~102쪽, 2023. DOI: 10.5626/JOK.2023.50.1.94.
[Endnote/Zotero/Mendeley (RIS)] Download
[BibTeX] Download
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr