Improving the Performance of Knowledge Tracing Models using Quantized Correctness Embeddings
Vol. 50, No. 4, pp. 329-336, Apr. 2023

-
knowledge tracing Artificial intelligence sinusoidal positional encoding quantization Embedding Deep Learning
Abstract
Statistics
Cumulative Counts from November, 2022
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
|
Cite this article
[IEEE Style]
Y. Im, J. Moon, E. Choi, J. Lee, "Improving the Performance of Knowledge Tracing Models using Quantized Correctness Embeddings," Journal of KIISE, JOK, vol. 50, no. 4, pp. 329-336, 2023. DOI: 10.5626/JOK.2023.50.4.329.
[ACM Style]
Yoonjin Im, Jaewan Moon, Eunseong Choi, and Jongwuk Lee. 2023. Improving the Performance of Knowledge Tracing Models using Quantized Correctness Embeddings. Journal of KIISE, JOK, 50, 4, (2023), 329-336. DOI: 10.5626/JOK.2023.50.4.329.
[KCI Style]
임윤진, 문재완, 최은성, 이종욱, "지식 추적 모델의 성능 개선을 위한 양자화된 정답률 임베딩 방법," 한국정보과학회 논문지, 제50권, 제4호, 329~336쪽, 2023. DOI: 10.5626/JOK.2023.50.4.329.
[Endnote/Zotero/Mendeley (RIS)] Download
[BibTeX] Download
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr