A GCN-based Time-Series Data Anomaly Detection Method using Sensor-specific Time Lagged Cross Correlation
Vol. 50, No. 9, pp. 805-812, Sep. 2023

Abstract
Statistics
Cumulative Counts from November, 2022
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
|
Cite this article
[IEEE Style]
K. Lee, Y. Kim, S. Jung, "A GCN-based Time-Series Data Anomaly Detection Method using Sensor-specific Time Lagged Cross Correlation," Journal of KIISE, JOK, vol. 50, no. 9, pp. 805-812, 2023. DOI: 10.5626/JOK.2023.50.9.805.
[ACM Style]
Kangwoo Lee, Yunyeong Kim, and Sungwon Jung. 2023. A GCN-based Time-Series Data Anomaly Detection Method using Sensor-specific Time Lagged Cross Correlation. Journal of KIISE, JOK, 50, 9, (2023), 805-812. DOI: 10.5626/JOK.2023.50.9.805.
[KCI Style]
이강우, 김윤영, 정성원, "센서별 시간지연 교차 상관관계를 이용한 GCN 기반의 시계열 데이터 이상 탐지 방법," 한국정보과학회 논문지, 제50권, 제9호, 805~812쪽, 2023. DOI: 10.5626/JOK.2023.50.9.805.
[Endnote/Zotero/Mendeley (RIS)] Download
[BibTeX] Download
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr