An Object Pseudo-Label Generation Technique based on Self-Supervised Vision Transformer for Improving Dataset Quality
Vol. 51, No. 1, pp. 49-58, Jan. 2024

-
Self-Supervised Learning Semi-supervised learning pseudo label Object Detection Object segmentation dataset
Abstract
Statistics
Cumulative Counts from November, 2022
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
|
Cite this article
[IEEE Style]
D. Kim, J. Jeon, S. Lim, H. Lee, "An Object Pseudo-Label Generation Technique based on Self-Supervised Vision Transformer for Improving Dataset Quality," Journal of KIISE, JOK, vol. 51, no. 1, pp. 49-58, 2024. DOI: 10.5626/JOK.2024.51.1.49.
[ACM Style]
Dohyun Kim, Jiwoong Jeon, Seongtaek Lim, and Hongchul Lee. 2024. An Object Pseudo-Label Generation Technique based on Self-Supervised Vision Transformer for Improving Dataset Quality. Journal of KIISE, JOK, 51, 1, (2024), 49-58. DOI: 10.5626/JOK.2024.51.1.49.
[KCI Style]
김도현, 전지웅, 임성택, 이홍철, "데이터셋 품질 개선을 위한 Self-Supervised Vision Transformer 기반의 객체 Pseudo-label 생성 기법," 한국정보과학회 논문지, 제51권, 제1호, 49~58쪽, 2024. DOI: 10.5626/JOK.2024.51.1.49.
[Endnote/Zotero/Mendeley (RIS)] Download
[BibTeX] Download
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr