Model Contrastive Federated Learning on Re-Identification 


Vol. 51,  No. 9, pp. 841-847, Sep.  2024
10.5626/JOK.2024.51.9.841


PDF

  Abstract

Advances in data collection and computing power have dramatically increased the integration of AI technology into various services. Traditional centralized cloud data processing raises concerns over the exposure of sensitive user data. To address these issues, federated learning (FL) has emerged as a decentralized training method where clients train models locally on their data and send locally updated models to a central server. The central server aggregates these locally updated models to improve a global model without directly accessing local data, thereby enhancing data privacy. This paper presents FedCON, a novel FL framework specifically designed for re-identification (Re-ID) tasks across various domains. FedCON integrates contrastive learning with FL to enhance feature representation, which is crucial for Re-ID tasks that emphasize similarity between feature vectors to match identities across different images. By focusing on feature similarity, FedCON can effectively addresses data heterogeneity challenges and improve the global model's performance in Re-ID applications. Empirical studies on person and vehicle Re-ID datasets demonstrated that FedCON outperformed existing FL methods for Re-ID. Our experiments with FedCON on various CCTV datasets for person Re-ID showed superior performance to several baselines. Additionally, FedCON significantly enhanced vehicle Re-ID performance on real-world datasets such as VeRi-776 and VRIC, demonstrating its practical applicability.


  Statistics
Cumulative Counts from November, 2022
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.


  Cite this article

[IEEE Style]

S. Kim, W. Chung, S. Cho, Y. Yang, S. Hwang, S. Yun, "Model Contrastive Federated Learning on Re-Identification," Journal of KIISE, JOK, vol. 51, no. 9, pp. 841-847, 2024. DOI: 10.5626/JOK.2024.51.9.841.


[ACM Style]

Seongyoon Kim, Woojin Chung, Sungwoo Cho, Yongjin Yang, Shinhyeok Hwang, and Se-Young Yun. 2024. Model Contrastive Federated Learning on Re-Identification. Journal of KIISE, JOK, 51, 9, (2024), 841-847. DOI: 10.5626/JOK.2024.51.9.841.


[KCI Style]

김성윤, 정우진, 조성우, 양용진, 황신혁, 윤세영, "Re-Identification에서의 대조 연합 학습 시스템," 한국정보과학회 논문지, 제51권, 제9호, 841~847쪽, 2024. DOI: 10.5626/JOK.2024.51.9.841.


[Endnote/Zotero/Mendeley (RIS)]  Download


[BibTeX]  Download



Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

Editorial Office

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr