PFD Simulator based Deep Reinforcement Learning for Energy Consumption Minimization of Electric RTO
Vol. 52, No. 6, pp. 490-498, Jun. 2025

-
electric regenerative thermal oxidizer Deep Q-Network energy consumption minimization optimal auto-control
Abstract
Statistics
Cumulative Counts from November, 2022
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
|
Cite this article
[IEEE Style]
J. Mo and M. Kim, "PFD Simulator based Deep Reinforcement Learning for Energy Consumption Minimization of Electric RTO," Journal of KIISE, JOK, vol. 52, no. 6, pp. 490-498, 2025. DOI: 10.5626/JOK.2025.52.6.490.
[ACM Style]
Ji-Sik Mo and Myung-Ho Kim. 2025. PFD Simulator based Deep Reinforcement Learning for Energy Consumption Minimization of Electric RTO. Journal of KIISE, JOK, 52, 6, (2025), 490-498. DOI: 10.5626/JOK.2025.52.6.490.
[KCI Style]
모지식, 김명호, "전기식 RTO 에너지 소모 최소화를 위한 PFD 시뮬레이터 기반 심층 강화학습," 한국정보과학회 논문지, 제52권, 제6호, 490~498쪽, 2025. DOI: 10.5626/JOK.2025.52.6.490.
[Endnote/Zotero/Mendeley (RIS)] Download
[BibTeX] Download
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr