SEG-SQL: Structure-aware Example Generation for Text-to-SQL Method with In-context Learning
Vol. 52, No. 11, pp. 992-1001, Nov. 2025
10.5626/JOK.2025.52.11.992
-
Text-to-SQL Large Language Model In-context learning few-shot example generation hint vector SQL-to-Text
Abstract
Statistics
Cumulative Counts from November, 2022
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
|
|
Cite this article
[IEEE Style]
D. Kwon, J. Moon, J. Lee, "SEG-SQL: Structure-aware Example Generation for Text-to-SQL Method with In-context Learning," Journal of KIISE, JOK, vol. 52, no. 11, pp. 992-1001, 2025. DOI: 10.5626/JOK.2025.52.11.992.
[ACM Style]
Donguk Kwon, Jaewan Moon, and Jongwook Lee. 2025. SEG-SQL: Structure-aware Example Generation for Text-to-SQL Method with In-context Learning. Journal of KIISE, JOK, 52, 11, (2025), 992-1001. DOI: 10.5626/JOK.2025.52.11.992.
[KCI Style]
권동욱, 문재완, 이종욱, "구조 기반 예제 생성을 활용한 문맥 학습 기반 Text-to-SQL 기법," 한국정보과학회 논문지, 제52권, 제11호, 992~1001쪽, 2025. DOI: 10.5626/JOK.2025.52.11.992.
[Endnote/Zotero/Mendeley (RIS)] Download
[BibTeX] Download
Search
Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr