한국어 형태소 분석을 위한 음절 단위 확률 모델 


41권  9호, pp. 642-651, 9월  2014


PDF

  요약

본 논문에서는 음절 단위의 한국어 형태소 분석 방법에 적용할 수 있는 세 가지 확률 모델을 제안하고, 품사 태깅 말뭉치를 이용하여 각 확률 모델의 성능을 평가한다. 성능 평가를 위해 1,000만 어절규모의 세종 말뭉치를 10 개의 세트로 나누고 10 배수 교차 검증 결과 98.4%의 정답 제시율을 얻을 수 있었다. 제안된 확률 모델은 각 음절에 대하여 품사 태그를 먼저 부착한 후 원형 복원 및 형태소 생성을 하기 때문에 원형 복원을 먼저 하는 기존 확률 모델에 비하여 탐색 공간이 크게 줄어들어 형태소 분석 과정이 훨씬 간결하고 효율적이어서 분석 속도가 기존의 초당 수 백 어절에서 14만 7천 어절로 약 174배 가량 향상시킬 수 있었다.


  통계
2022년 11월부터 누적 집계
동일한 세션일 때 여러 번 접속해도 한 번만 카운트됩니다. 그래프 위에 마우스를 올리면 자세한 수치를 확인하실 수 있습니다.


  논문 참조

[IEEE Style]

K. Shim, "Syllable-based Probabilistic Models for Korean Morphological Analysis," Journal of KIISE, JOK, vol. 41, no. 9, pp. 642-651, 2014. DOI: .


[ACM Style]

Kwangseob Shim. 2014. Syllable-based Probabilistic Models for Korean Morphological Analysis. Journal of KIISE, JOK, 41, 9, (2014), 642-651. DOI: .


[KCI Style]

심광섭, "한국어 형태소 분석을 위한 음절 단위 확률 모델," 한국정보과학회 논문지, 제41권, 제9호, 642~651쪽, 2014. DOI: .


[Endnote/Zotero/Mendeley (RIS)]  Download


[BibTeX]  Download



Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr