Creating Level Set Trees Using One-Class Support Vector Machines 


42권  1호, pp. 86-92, 1월  2015


PDF

  요약

레벨 셋 트리는 다차원에 정의된 확률 밀도 함수를 표현하는데 유용하다. 복잡한 데이터의 구조를 트리 형태로 시각화하여 데이터의 형태를 효율적으로 파악할 수 있으며 클러스터링 분석에 효과적으로 이용할 수 있다. 본 논문에서는 미지의 확률 밀도 함수에서 생성된 데이터 샘플로부터 레벨 셋 트리를 생성하는 알고리즘을 제안한다. 제안된 알고리즘은 레벨을 0에서부터 무한대로 증가시키며 밀도 함수의 각 레벨 셋을 추정하고, 이로부터 레벨 셋 트리를 생성한다. 이를 위해 본 논문에서는 one-class 서포트 벡터머신 (OC-SVM)을 이용하여 직접적으로 레벨 셋을 추정한다. 이때 다양한 레벨 값에 대해 OC-SVM 학습을 반복해야 하는데, OC-SVM 솔루션 path 알고리즘을 통해 빠른 시간 안에 모든 레벨값에 해당하는 레벨 셋를 추정할 수 있다.


  통계
2022년 11월부터 누적 집계
동일한 세션일 때 여러 번 접속해도 한 번만 카운트됩니다. 그래프 위에 마우스를 올리면 자세한 수치를 확인하실 수 있습니다.


  논문 참조

[IEEE Style]

G. Lee, "Creating Level Set Trees Using One-Class Support Vector Machines," Journal of KIISE, JOK, vol. 42, no. 1, pp. 86-92, 2015. DOI: .


[ACM Style]

Gyemin Lee. 2015. Creating Level Set Trees Using One-Class Support Vector Machines. Journal of KIISE, JOK, 42, 1, (2015), 86-92. DOI: .


[KCI Style]

Gyemin Lee, "Creating Level Set Trees Using One-Class Support Vector Machines," 한국정보과학회 논문지, 제42권, 제1호, 86~92쪽, 2015. DOI: .


[Endnote/Zotero/Mendeley (RIS)]  Download


[BibTeX]  Download



Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr