Keypoint Detection Using Normalized Higher-Order Scale Space Derivatives
Vol. 42, No. 1, pp. 93-96, Jan. 2015
Abstract
Statistics
Cumulative Counts from November, 2022
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
|
Cite this article
[IEEE Style]
J. Park and U. Park, "Keypoint Detection Using Normalized Higher-Order Scale Space Derivatives," Journal of KIISE, JOK, vol. 42, no. 1, pp. 93-96, 2015. DOI: .
[ACM Style]
Jongseung Park and Unsang Park. 2015. Keypoint Detection Using Normalized Higher-Order Scale Space Derivatives. Journal of KIISE, JOK, 42, 1, (2015), 93-96. DOI: .
[KCI Style]
박종승, 박운상, "스케일 공간 고차 미분의 정규화를 통한 특징점 검출 기법," 한국정보과학회 논문지, 제42권, 제1호, 93~96쪽, 2015. DOI: .
[Endnote/Zotero/Mendeley (RIS)] Download
[BibTeX] Download
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr