Korean Semantic Role Labeling Using Structured SVM 


Vol. 42,  No. 2, pp. 220-226, Feb.  2015


PDF

  Abstract

Semantic role labeling (SRL) systems determine the semantic role labels of the arguments of predicates in natural language text. An SRL system usually needs to perform four tasks in sequence: Predicate Identification (PI), Predicate Classification (PC), Argument Identification (AI), and Argument Classification (AC). In this paper, we use the Korean Propbank to develop our Korean semantic role labeling system. We describe our Korean semantic role labeling system that uses sequence labeling with structured Support Vector Machine (SVM). The results of our experiments on the Korean Propbank dataset reveal that our method obtains a 97.13% F1 score on Predicate Identification and Classification (PIC), and a 76.96% F1 score on Argument Identification and Classification (AIC).


  Statistics
Cumulative Counts from November, 2022
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.


  Cite this article

[IEEE Style]

C. Lee, S. Lim, H. Kim, "Korean Semantic Role Labeling Using Structured SVM," Journal of KIISE, JOK, vol. 42, no. 2, pp. 220-226, 2015. DOI: .


[ACM Style]

Changki Lee, Soojong Lim, and Hyunki Kim. 2015. Korean Semantic Role Labeling Using Structured SVM. Journal of KIISE, JOK, 42, 2, (2015), 220-226. DOI: .


[KCI Style]

이창기, 임수종, 김현기, "Structural SVM 기반의 한국어 의미역 결정," 한국정보과학회 논문지, 제42권, 제2호, 220~226쪽, 2015. DOI: .


[Endnote/Zotero/Mendeley (RIS)]  Download


[BibTeX]  Download



Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

Editorial Office

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr