보행 방향 및 상태 분석을 위한 병렬 가우스 과정 


42권  6호, pp. 748-754, 6월  2015


PDF

  요약

본 연구에서는 다중 상태 변수의 인수 HMM을 일반화하여 연속 은닉 변수와 이산 은닉 변수가 결합된 순차 상태 추정 모형을 제안하고 이에 기반한 보행 동작 모형을 설계한다. 유한 상태의 이산변수는 마르코프 연쇄 구조로 보행의 동역학적 특성을 표현하고 각 이산 상태에 대해 연속 변수를 독립변수로 한 가우스 과정을 정의한다. 마르코프 상태 천이는 여러 가우스 과정 사이의 스위칭을 제어하며 각 가우스 과정은 동일한 자세의 회전 또는 다양한 시각을 표현한다. 온라인 필터링 추론을 위해 입자 필터 방식의 추론 알고리듬도 제시한다. 이 알고리듬은 입력 벡터 열이 주어졌을 때 이들 병렬적 가우스 과정을 동적으로 갈아타는 스위칭 궤적을 디코딩 해준다. 실험 결과 비선형적 보행자 비디오 영상을 보행방향과 보행 상태의 열로 분리하며 매우 직관적인 해석을 할 수 있음을 보였다.


  통계
2022년 11월부터 누적 집계
동일한 세션일 때 여러 번 접속해도 한 번만 카운트됩니다. 그래프 위에 마우스를 올리면 자세한 수치를 확인하실 수 있습니다.


  논문 참조

[IEEE Style]

B. Sin, "Parallel Gaussian Processes for Gait and Phase Analysis," Journal of KIISE, JOK, vol. 42, no. 6, pp. 748-754, 2015. DOI: .


[ACM Style]

Bong-Kee Sin. 2015. Parallel Gaussian Processes for Gait and Phase Analysis. Journal of KIISE, JOK, 42, 6, (2015), 748-754. DOI: .


[KCI Style]

신봉기, "보행 방향 및 상태 분석을 위한 병렬 가우스 과정," 한국정보과학회 논문지, 제42권, 제6호, 748~754쪽, 2015. DOI: .


[Endnote/Zotero/Mendeley (RIS)]  Download


[BibTeX]  Download



Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr