주성분 분석의 안전한 다자간 계산 


42권  7호, pp. 919-928, 7월  2015


PDF

  요약

최근 대용량 데이터 대상의 프라이버시 보호 데이터 마이닝(privacy-preserving data mining : PPDM)이 활발히 연구되고 있다. 본 논문에서는 민감한 데이터 집합의 상관관계를 파악하는데 널리 사용되는 주성분 분석 기반의 PPDM을 다룬다. 일반적으로 주성분 분석은 모든 데이터를 한 곳에 모아 처리해야 하므로 민감한 데이터가 서로에게 공개되고, 상당한 계산량을 요구하며, 또한 데이터를 모으는 과정에서 많은 통신 오버헤드가 발생한다. 이러한 문제를 해결하기 위하여 본 논문은 데이터를 한 곳에 모으지 않고도 주성분 분석을 안전하게 계산하는 효율적인 방법을 제안한다. 제안하는 방법은 노드들 간에 한정된 정보만을 공유하면서도 원래의 주성분 분석 결과와 동일한 결과를 얻을 수 있다. 또한 안전한 주성분 분석에 저차원 변환을 적용하여 안전한 유사 문서 검색에 사용한다. 마지막으로 다양한 실험을 통해 제안한 방법이 대용량의 다차원 데이터에서 효율적으로 동작함을 확인한다.


  통계
2022년 11월부터 누적 집계
동일한 세션일 때 여러 번 접속해도 한 번만 카운트됩니다. 그래프 위에 마우스를 올리면 자세한 수치를 확인하실 수 있습니다.


  논문 참조

[IEEE Style]

S. Kim, S. Lee, M. Gil, Y. Moon, H. Won, "Secure Multiparty Computation of Principal Component Analysis," Journal of KIISE, JOK, vol. 42, no. 7, pp. 919-928, 2015. DOI: .


[ACM Style]

Sang-Pil Kim, Sanghun Lee, Myeong-Seon Gil, Yang-Sae Moon, and Hee-Sun Won. 2015. Secure Multiparty Computation of Principal Component Analysis. Journal of KIISE, JOK, 42, 7, (2015), 919-928. DOI: .


[KCI Style]

김상필, 이상훈, 길명선, 문양세, 원희선, "주성분 분석의 안전한 다자간 계산," 한국정보과학회 논문지, 제42권, 제7호, 919~928쪽, 2015. DOI: .


[Endnote/Zotero/Mendeley (RIS)]  Download


[BibTeX]  Download



Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr