안드로이드 OS에서 앱 설치 의사결정 지원을 위한 악성 앱 분류 시스템 


42권  12호, pp. 1611-1622, 12월  2015


PDF

  요약

안드로이드 시스템은 권한 기반의 접근제어 기능을 제공하고, 사용자로 하여금 앱 설치시 앱이 가진 권한을 통해 설치여부를 판단하도록 요구하고 있지만, 대부분의 사용자는 이것을 무시하거나 모르고 지나치는 경향이 있다. 따라서 사용자가 이와 같은 중요한 단계에 주어진 역할을 직관적으로 수행할 수 있도록 하기 위한 개선된 방법이 필요하다. 본 논문에서는 퍼미션 기반 접근제어 시스템을 위해 사용자의 의사결정을 즉각 지원할 수 있는 새로운 기법을 기계학습에 기반하여 연구하고 제안한다. 구체적으로 K-최근접 이웃 알고리즘을 목적에 맞게 수정하여 악성앱 가능성 판단에 대한 연구를 진행하였으며, 특성으로 안드로이드의 권한 152개를 사용했다. 실험 결과 약 93.5%의 정확도를 보였으며 유사한 알고리즘, 혹은 특성으로 권한만을 사용한 기존의 연구결과에 비해 우수한 분류 결과를 보였다. 이는 K-최근접 이웃 알고리즘의 범주 선택시 가중합을 반영했기 때문이다. 본 연구결과는 사용자가 권한을 검토하고 설치할 때 의사결정에 도움을 줄 수 있을 것으로 기대된다.


  통계
2022년 11월부터 누적 집계
동일한 세션일 때 여러 번 접속해도 한 번만 카운트됩니다. 그래프 위에 마우스를 올리면 자세한 수치를 확인하실 수 있습니다.


  논문 참조

[IEEE Style]

H. R. Ryu, Y. Jang, T. Kwon, "Malware Classification System to Support Decision Making of App Installation on Android OS," Journal of KIISE, JOK, vol. 42, no. 12, pp. 1611-1622, 2015. DOI: .


[ACM Style]

Hong Ryeol Ryu, Yun Jang, and Taekyoung Kwon. 2015. Malware Classification System to Support Decision Making of App Installation on Android OS. Journal of KIISE, JOK, 42, 12, (2015), 1611-1622. DOI: .


[KCI Style]

유홍렬, 장윤, 권태경, "안드로이드 OS에서 앱 설치 의사결정 지원을 위한 악성 앱 분류 시스템," 한국정보과학회 논문지, 제42권, 제12호, 1611~1622쪽, 2015. DOI: .


[Endnote/Zotero/Mendeley (RIS)]  Download


[BibTeX]  Download



Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr