Spatiotemporal Data Visualization using Gravity Model 


Vol. 43,  No. 2, pp. 135-142, Feb.  2016


PDF

  Abstract

Visual analysis of spatiotemporal data has focused on a variety of techniques for analyzing and exploring the data. The goal of these techniques is to explore the spatiotemporal data using time information, discover patterns in the data, and analyze spatiotemporal data. The overall trend flow patterns help users analyze geo-referenced temporal events. However, it is difficult to extract and visualize overall trend flow patterns using data that has no trajectory information for movements. In order to visualize overall trend flow patterns, in this paper, we estimate continuous distributions of discrete events over time using KDE, and we extract vector fields from the continuous distributions using the gravity model. We then apply our technique on twitter data to validate techniques.


  Statistics
Cumulative Counts from November, 2022
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.


  Cite this article

[IEEE Style]

S. Kim, H. Yeon, Y. Jang, "Spatiotemporal Data Visualization using Gravity Model," Journal of KIISE, JOK, vol. 43, no. 2, pp. 135-142, 2016. DOI: .


[ACM Style]

Seokyeon Kim, Hanbyul Yeon, and Yun Jang. 2016. Spatiotemporal Data Visualization using Gravity Model. Journal of KIISE, JOK, 43, 2, (2016), 135-142. DOI: .


[KCI Style]

김석연, 연한별, 장윤, "중력 모델을 이용한 시공간 데이터의 시각화," 한국정보과학회 논문지, 제43권, 제2호, 135~142쪽, 2016. DOI: .


[Endnote/Zotero/Mendeley (RIS)]  Download


[BibTeX]  Download



Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

Editorial Office

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr