An Effective Concept Drift Detection Method on Streaming Data Using Probability Estimates
Vol. 43, No. 6, pp. 718-723, Jun. 2016
Abstract
Statistics
Cumulative Counts from November, 2022
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.
|
Cite this article
[IEEE Style]
Y. Kim and C. H. Park, "An Effective Concept Drift Detection Method on Streaming Data Using Probability Estimates," Journal of KIISE, JOK, vol. 43, no. 6, pp. 718-723, 2016. DOI: .
[ACM Style]
Young-In Kim and Cheong Hee Park. 2016. An Effective Concept Drift Detection Method on Streaming Data Using Probability Estimates. Journal of KIISE, JOK, 43, 6, (2016), 718-723. DOI: .
[KCI Style]
김영인, 박정희, "스트리밍 데이터에서 확률 예측치를 이용한 효과적인 개념 변화 탐지 방법," 한국정보과학회 논문지, 제43권, 제6호, 718~723쪽, 2016. DOI: .
[Endnote/Zotero/Mendeley (RIS)] Download
[BibTeX] Download
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr