능동 시각을 이용한 이미지 - 텍스트 다중 모달 체계 학습 


43권  7호, pp. 795-800, 7월  2016


PDF

  요약

이미지 분류 문제는 인간 수준의 성능을 보이지만 일반적인 인식 문제는 어려운 점들이 남아있다. 실내 환경은 다양한 정보를 담고 있어 정보 처리의 양을 효율적으로 줄일 필요성이 있다. 정보의 양을 효율적으로 줄일 수 있도록 대상 객체의 위치 측정을 위한 변분 추론, 변분 베이지안 등의 방법이 소개되었지만, 모든 경우에 대한 주변(marginal) 확률 분포를 구하기 어렵기 때문에 현실적으로 계산하기 어렵다. 본 연구에서는 공간 변형 네트워크(Spatial Transformer Networks)을 응용하여 능동 시각을 이용한 이미지-텍스트 통합 인지 체계를 제안한다. 이 체계는 주어진 텍스트 정보를 바탕으로 이미지의 일부를 효율적으로 샘플링 하도록 학습한다. 이를 통해 전통적인 방법으로 해결하기 어려운 문제를 상당한 격차로 성능을 향상 시킬 수 있다는 것을 보인다. 제안하는 모델을 통해 샘플링 된 이미지를 정성적으로 분석하여 이 모델이 가지는 특성도 함께 살펴본다.


  통계
2022년 11월부터 누적 집계
동일한 세션일 때 여러 번 접속해도 한 번만 카운트됩니다. 그래프 위에 마우스를 올리면 자세한 수치를 확인하실 수 있습니다.


  논문 참조

[IEEE Style]

J. Kim and B. Zhang, "Active Vision from Image-Text Multimodal System Learning," Journal of KIISE, JOK, vol. 43, no. 7, pp. 795-800, 2016. DOI: .


[ACM Style]

Jin-Hwa Kim and Byoung-Tak Zhang. 2016. Active Vision from Image-Text Multimodal System Learning. Journal of KIISE, JOK, 43, 7, (2016), 795-800. DOI: .


[KCI Style]

김진화, 장병탁, "능동 시각을 이용한 이미지 - 텍스트 다중 모달 체계 학습," 한국정보과학회 논문지, 제43권, 제7호, 795~800쪽, 2016. DOI: .


[Endnote/Zotero/Mendeley (RIS)]  Download


[BibTeX]  Download



Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr