ConvNet을 활용한 영역기반 신속/범용 영상정합 기술 


43권  9호, pp. 1034-1042, 9월  2016


PDF

  요약

영역기반 영상정합은 미리 정의된 특징의 도움 없이 영상을 정합할 수 있기 때문에, 기계학습과 접목된다면 이론 상 다양한 영상정합 문제에 적용 가능하다. 그러나 신속한 정합을 위하여, 미리 정의된 특징을 탐지하여 패치 쌍 후보를 선정에 사용하는데, 이는 영역기반 방법의 적용성에 제약을 준다. 이를 해소하기 위하여 본 연구에서는 단순히 두 패치의 관련도 뿐만 아니라 두 패치가 어느 정도 공간 상 떨어져 있는지에 대한 정보를 제공하는 ConvNet Dart를 개발하였다. 이러한 정보를 기반으로 효율적으로 패치 쌍 탐색공간을 줄일 수 있었다. 추가로 Dart가 제대로 작동할 수 없는 영역을 식별하는 ConvNet Fad를 개발하여 정합의 정밀도를 높였다. 본 연구에서는 이들을 딥러닝으로 학습하였으며, 이를 위해 소수의 정합된 영상에서 다량의 예제를 생성하는 방법을 개발하였다. 마지막으로 단순한 영상정합 문제에 성공적으로 적용하여, 이러한 방법론이 작동하는 것을 보였다.


  통계
2022년 11월부터 누적 집계
동일한 세션일 때 여러 번 접속해도 한 번만 카운트됩니다. 그래프 위에 마우스를 올리면 자세한 수치를 확인하실 수 있습니다.


  논문 참조

[IEEE Style]

S. Baek, "Fast and All-Purpose Area-Based Imagery Registration Using ConvNets," Journal of KIISE, JOK, vol. 43, no. 9, pp. 1034-1042, 2016. DOI: .


[ACM Style]

Seung-Cheol Baek. 2016. Fast and All-Purpose Area-Based Imagery Registration Using ConvNets. Journal of KIISE, JOK, 43, 9, (2016), 1034-1042. DOI: .


[KCI Style]

백승철, "ConvNet을 활용한 영역기반 신속/범용 영상정합 기술," 한국정보과학회 논문지, 제43권, 제9호, 1034~1042쪽, 2016. DOI: .


[Endnote/Zotero/Mendeley (RIS)]  Download


[BibTeX]  Download



Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr