속성값 기반의 정규화된 로지스틱 회귀분석 모델 


43권  11호, pp. 1270-1274, 11월  2016


PDF

  요약

로지스틱 회귀분석은 통계학 등의 분야에서 예측을 위한 기술 혹은 변수 간의 상관관계를 설명하기 위하여 오랫동안 사용되어 왔다. 이러한 로지스틱 회귀분석 방법에서 현재 각 속성들은 목적 값에 대하여 동일한 중요도를 가지고 있다. 본 연구에서는 이러한 가중치 계산을 좀더 세분화하여 각 속성의 값이 서로 다른 중요도를 가지는 새로운 학습 방법을 제시한다. 알고리즘의 성능을 최대화하는 각 속성값 가중치의 값을 계산하기 위하여 점진적 하강법을 이용하여 개발하였다. 본 연구에서 제안된 방법은 다양한 데이터를 이용하여 실험하였고 속성값 기반 로지스틱 회귀분석 방법은 기존의 로지스틱 회귀분석보다 우수한 학습 능력을 보임을 알 수 있었다.


  통계
2022년 11월부터 누적 집계
동일한 세션일 때 여러 번 접속해도 한 번만 카운트됩니다. 그래프 위에 마우스를 올리면 자세한 수치를 확인하실 수 있습니다.


  논문 참조

[IEEE Style]

C. Lee and M. Jung, "Value Weighted Regularized Logistic Regression Model," Journal of KIISE, JOK, vol. 43, no. 11, pp. 1270-1274, 2016. DOI: .


[ACM Style]

Chang-Hwan Lee and Mina Jung. 2016. Value Weighted Regularized Logistic Regression Model. Journal of KIISE, JOK, 43, 11, (2016), 1270-1274. DOI: .


[KCI Style]

이창환, 정미나, "속성값 기반의 정규화된 로지스틱 회귀분석 모델," 한국정보과학회 논문지, 제43권, 제11호, 1270~1274쪽, 2016. DOI: .


[Endnote/Zotero/Mendeley (RIS)]  Download


[BibTeX]  Download



Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr