확률파싱오토마타 모델 


44권  3호, pp. 239-245, 3월  2017


PDF

  요약

확률문법은 자연어처리에서 사용되며, 확률문법에 대한 구문분석의 결과인 파스는 문법의 확률을 그대로 보존해야 한다. 대표적인 구문분석방법인 LL 파싱과 LR 파싱의 확률파싱 가능성을 살펴볼 때 LL 파싱은 문법의 확률정보를 그대로 유지하는 반면에 LR 파싱은 그렇지 않다. 확률문법과 확률파싱오토마톤과의 관계에 관한 기존 연구로 확률보존조건을 충족하는 오토마톤의 특성에 관한 연구는 진행된 바 있다. 그렇지만, 현재로서는 확률보존조건을 충족하는 오토마톤 생성모델에 관해서는 알려진 바가 없다. 본 논문에서는 단일상태파싱오토마타에 기반한 확률파싱오토마타 모델을 제안한다. 제안 모델로부터 생성되는 오토마톤은 확률보존조건을 보장하기에 별도의 확률파싱 가능 여부를 테스팅하는 단계가 불필요하고, 별도의 확률 함수를 정의하지 않아도 된다. 또한 매개인자를 적절하게 선택하여 효율적인 오토마톤의 생성이 가능하다.


  통계
2022년 11월부터 누적 집계
동일한 세션일 때 여러 번 접속해도 한 번만 카운트됩니다. 그래프 위에 마우스를 올리면 자세한 수치를 확인하실 수 있습니다.


  논문 참조

[IEEE Style]

G. Lee, "A Model of Probabilistic Parsing Automata," Journal of KIISE, JOK, vol. 44, no. 3, pp. 239-245, 2017. DOI: .


[ACM Style]

Gyung-Ok Lee. 2017. A Model of Probabilistic Parsing Automata. Journal of KIISE, JOK, 44, 3, (2017), 239-245. DOI: .


[KCI Style]

이경옥, "확률파싱오토마타 모델," 한국정보과학회 논문지, 제44권, 제3호, 239~245쪽, 2017. DOI: .


[Endnote/Zotero/Mendeley (RIS)]  Download


[BibTeX]  Download



Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr