디지털 라이브러리[ 검색결과 ]
분산 메모리 시스템에서의 SPARQL 질의 처리
본 논문에서는 functional 프로그래밍과 분산 메모리 환경인 Spark를 통해 SPARQL 질의문 처리의 오버헤드를 줄일 수 있는 방법을 제안한다. 최근 몇 년간 시멘팁웹의 RDF 온톨로지 데이터는 폭발적으로 증가하고 있기 때문에, 대용량 온톨로지 데이터에 대한 질의문을 효율적으로 처리할 수 있는 방법이 주요 쟁점으로 떠오르고 있다. SPARQL 질의문 처리에 대한 기존의 연구들은 하둡의 맵리듀스 프레임워크에 초점을 맞추고 있다. 그러나 하둡은 분산 파일 처리를 기반의 작업을 수행하므로 성능 저하가 발생할 수 있다. 따라서 질의문 처리 속도를 향상 시키기 위해 본 논문에서는 분산 메모리 시스템을 통해 질의문을 처리할 수 있는 방법을 제안한다. 또한 SPARQL 질의어 사이의 Binding 값을 Propagation하기 위해서 Spark의 Join방식, Functional 프로그램의 Map, Filter 방식, Spark의 캐시 기능을 활용 하는 방식을 제안하고 있다. 본 논문의 실험 결과는 다른 기법들과 비교하여 높은 성능을 얻었다. 특히 현재 가장 빠른 성능을 보이는 SPARQL 질의 엔진인 Sempala와 유사하다는 결과를 얻었다.
인메모리 기반 병렬 컴퓨팅 그래프 구조를 이용한 대용량 RDFS 추론
전명중, 소치승, 바트셀렘, 김강필, 김진, 홍진영, 박영택
근래에 들어 풍부한 지식베이스를 구축하기 위한 대용량 RDFS 추론에 대한 관심이 높아지면서 기존의 단일 머신으로는 대용량 데이터의 추론 성능을 향상시키기에 한계가 있다. 그래서 분산 환경에서 의 RDFS 추론 엔진 개발이 활발히 연구되고 있다. 하지만 기존의 분산 환경 엔진은 실시간 처리가 불가능 하며 구현이 어렵고 반복 작업에 취약하다. 본 논문에서는 이러한 문제를 극복하기 위해 병렬 그래프 구조 를 사용한 인-메모리 분산 추론 엔진 구축 방법을 제안한다. 트리플 형태의 온톨로지는 기본적으로 그래프 구조를 가지고 있으므로 그래프 구조 기반의 추론 엔진을 설계하는 것이 직관적이다. 또한 그래프 구조를 활용하는 오퍼레이터를 활용하여 RDFS 추론 규칙을 구현함으로써 기존의 데이터 관점과 달리 그래프 구조의 관점에서 설계할 수 있다. 본 논문에서 제안한 추론 엔진을 평가하기 위해 LUBM1000(1억 3천 3백만 트리플, 17.9GB), LUBM3000(4억 1천 3백만 트리플, 54.3GB)에 대해 추론 속도를 실험을 하였으며 실 험결과, 비-인메모리 분산 추론 엔진보다 약 10배 정도 빠른 추론 성능을 보였다.