검색 : [ author: 김민경 ] (2)

Convolutional Neural Network에서 공유 계층의 부분 학습에 기반 한 화자 의도 분석

김민경, 김학수

http://doi.org/10.5626/JOK.2017.44.12.1252

대화에서 화자의 의도는 감정, 화행, 그리고 서술자로 표현될 수 있다. 따라서 사용자 질의에 정확하게 응답하기 위해서 대화 시스템은 발화에 내포된 감정, 화행, 그리고 서술자를 파악해야한다. 많은 이전 연구들은 감정, 화행, 서술자를 독립된 분류 문제로 다뤄왔다. 그러나 몇몇 연구에서는 감정, 화행, 서술자가 서로 연관되어 있음을 보였다. 본 논문에서는 Convolutional Neural Netowork를 이용하여 감정, 화행, 서술자를 동시에 분석하는 통합 모델을 제안한다. 제안 모델은 특정 추상화 계층과, 공유 추상화 계층으로 구성된다. 특정 추상화 계층에서는 감정, 화행, 서술자의 독립된 정보가 추출되고 공유 추상화 계층에서 독립된 정보들의 조합이 추상화된다. 학습 시 감정의 오류, 화행의 오류, 서술자의 오류는 부분적으로 역 전파 된다. 제안한 통합 모델은 실험에서 독립된 모델보다 좋은 성능(감정 +2%p, 화행 +11%p, 서술자 +3%)을 보였다.

의학문서 질의응답을 위한 정답 스닛핏 검색

이현구, 김민경, 김학수

http://doi.org/

온라인 의학 문서의 폭발적 증가와 함께 질의응답 시스템에 대한 필요성이 늘어나고 있다. 최근에는 기계학습에 기반 한 질의응답 모델들이 다양한 영역에서 좋은 결과를 보여 왔다. 그러나 의학 영역에서 질의응답 모델들은 학습 데이터의 부족으로 인해 여전히 정보 검색 기술에 기반을 두고 있다. 본 논문에서는 다양한 정보검색 기술에 기반 한 의학문서 질의응답용 정답 스닛핏 검색 모델을 제안한다. 제안 모델은 먼저 클러스터 기반 검색 기술을 이용하여 의학 문서로부터 많은 정답 후보 문장을 검색한다. 그리고 다양한 문장 검색 기술들에 기반 한 정답 후보 문장 재순위화 모델을 사용하여 신뢰성 있는 정답 스닛핏을 생성한다. BioASQ 4b 데이터를 이용한 실험에서 제안 모델은 기존 모델보다 좋은 성능(MAP0.0604)을 보였다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr