Digital Library[ Search Result ]
Improvement of Deep Learning Models to Predict the Knowledge Level of Learners based on the EdNet Data
Seulgi Choi, Youngpyo Kim, Sojung Hwang, Heeyoul Choi
http://doi.org/10.5626/JOK.2021.48.12.1335
As online education increases, the field of AI in Education (AIEd), where artificial intelligence is used for education, is being actively studied. Knowledge Tracing (KT), which predicts a student"s knowledge level based on each student"s learning record, is a basic task in the AIEd field. However, there is a lack of utilization of the dataset and research on the KT model architecture. In this paper, we propose to use a total of 11 features, after trying various features related to the problems, and present a new model based on the self-attention mechanism with new query, key, and values, Self-Attentive Knowledge Tracking Extended (SANTE). In experiments, we confirm that the proposed method with the selected features outperforms the previous KT models in terms of the AUC value.
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr