Search : [ author: 김용준 ] (2)

Analyzing the Impact of Sequential Context Learning on the Transformer Based Korean Text Summarization Model

Subin Kim, Yongjun Kim, Junseong Bang

http://doi.org/10.5626/JOK.2021.48.10.1097

Text summarization reduces the sequence length while maintaining the meaning of the entire article body, solving the problem of overloading information and helping readers consume information quickly. To this end, research on a Transformer-based English text summarization model has been actively conducted. Recently, an abstract text summary model reflecting the characteristics of English with a fixed word order by adding a Recurrent Neural Network (RNN)-based encoder was proposed. In this paper, we study the effect of sequential context learning on the text abstract summary model by using an RNN-based encoder for Korean, which has more free word order than English. Transformer-based model and a model that added RNN-based encoder to existing Transformer model are trained to compare the performance of headline generation and article body summary for the Korean articles collected directly. Experiments show that the model performs better when the RNN-based encoder is added, and that sequential contextual information learning is required for Korean abstractive text summarization.

Disassortative Network Distribution Techniques Using Hub Grouping Based On Local Differential Privacy

Yongjun Kim, Seog Park

http://doi.org/10.5626/JOK.2020.47.6.603

With the development of the wireless Internet and popularization of smartphones, many people are using social network services that connect with others in online. Personal data generated by social network services have high value, but comprise sensitive personal information that could potentially result in serious privacy breaches. The existing studies have presented techniques for generating synthetic data similar to the original network data, or anonymous user information. However, the existing techniques have inherent weaknesses in privacy and data utility because such techniques have not considered the characteristics of network graphs formed by relationships with users. In this paper, we propose the privacy-protected social network data distribution techniques by applying local differential privacy techniques that reflect the characteristics on the social network graph. Through experiments with real data, we have shown that the proposed techniques perform better than the existing differentially private social network data distribution techniques.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

Editorial Office

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr