Digital Library[ Search Result ]
A Method to Establish Severity Weight of Defect Factors for Application Software using ANP
In order to improve software quality, it is necessary to efficiently and effectively remove software defects in source codes. In the development field, defects are removed according to removal ratio or severity of defects. There are several studies on the removal of defects based on software quality attributes, and several other studies have been done to improve the software quality using classification of the severity of defects, when working on projects. These studies have thus far been insufficient in terms of identifying if there exists relationships between defects or whether any type of defect is more important than others. Therefore, in this study, we collected various types of software defects, standards organization, companies, and researchers. We modeled the defects types using an ANP model, and developed the weighted severities of the defects types, with respect to the general application software, using the ANP model. When general application software is developed, we will be able to use the weight for each severity of defect type, and we expect to be able to remove defects efficiently and effectively.
Automatic Construction of a Negative/positive Corpus and Emotional Classification using the Internet Emotional Sign
Kyoungae Jang, Sanghyun Park, Woo-Je Kim
Internet users purchase goods on the Internet and express their positive or negative emotions of the goods in product reviews. Analysis of the product reviews become critical data to both potential consumers and to the decision making of enterprises. Therefore, the importance of opinion mining techniques which derive opinions by analyzing meaningful data from large numbers of Internet reviews. Existing studies were mostly based on comments written in English, yet analysis in Korean has not actively been done. Unlike English, Korean has characteristics of complex adjectives and suffixes. Existing studies did not consider the characteristics of the Internet language. This study proposes an emotional classification method which increases the accuracy of emotional classification by analyzing the characteristics of the Internet language connoting feelings. We can classify positive and negative comments about products automatically using the Internet emoticon. Also we can check the validity of the proposed algorithm through the result of high precision, recall and coverage for the evaluation of this method.
Project Failure Main Factors Analysis using Text Mining in Audit Evaluation
Kyoungae Jang, Seong Yong Jang, Woo-Je Kim
Corporations should make efforts to recognize the importance of projects, identify their failure factors, prevent risks in advance, and raise the success rates, because the corporations need to make quick responses to rapid external changes. There are some previous studies on success and failure factors of projects, however, most of them have limitations in terms of objectivity and quantitative analysis based on data gathering through surveys, statistical sampling and analysis. This study analyzes the failure factors of projects based on data mining to find problems with projects in an audit report, which is an objective project evaluation report. To do this, we identified the texts in the paragraph of suggestions about improvement. We made use of the superior classification algorithms in this study, which were NaiveBayes, SMO and J48. They were evaluated in terms of data of Recall and Precision after performing 10-fold-cross validation. In the identified texts, the failure factors of projects were analyzed so that they could be utilized in project implementation.
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr