디지털 라이브러리[ 검색결과 ]
다양한 조명 색상에서 합성 이미지의 시각적 균일성 향상을 위한 이미지 조화 기법
http://doi.org/10.5626/JOK.2024.51.4.345
이미지 합성은 배경 이미지 위에 다른 이미지에서 추출한 전경 객체를 배치하여 새로운 이미지를 생성하는 기법이다. 이러한 합성 이미지의 시각적 균일성 향상을 위해 전경 객체의 조명 색상을 배경 이미지와 일치되게 조정하는 딥러닝 기반의 이미지 조화 기법들이 최근 활발히 제안되고 있다. 하지만, 기존 기법들은 학습에 사용된 데이터셋의 조명 색상 분포에 대해서만 색상을 조정하기 때문에 시각적 균일성에서 성능이 제한적이다. 이에 본 논문은 다양한 조명 색상에 강건한 성능을 보이는 새로운 이미지 조화 기법을 제안한다. 우선, 데이터 전처리를 통해 다양한 조명 색상 분포로 구성된 새로운 데이터셋인 iHColor를 먼저 구축하고, 사전 훈련된 GAN 기반 Harmonization 모델을 iHColor 데이터셋을 사용하여 미세 조정을 수행한다. 실험을 통해 제안 기법이 다양한 조명 색상에서 기존 모델보다 합성 이미지의 시각적 균일성을 개선시킴을 보인다.
하둡 및 Spark 기반 공간 통계 핫스팟 분석의 분산처리 방안 연구
http://doi.org/10.5626/JOK.2018.45.2.99
공간통계 분석중 하나인 핫스팟 분석은 “인접해 있는 것은 멀리 있는 것 보다 더 연관성이 있다”는 법칙에 따라 공간속성이나 사건의 공간 패턴을 쉽게 파악할 수 있는 기법 중 하나 이지만, 공간의 인접성이 고려되어야 하므로 분산 처리하기 용이하지 않다. 본 논문에서는 핫스팟 분석의 분산처리 방안을 기술하고 성능을 하둡 및 인메모리 기반인 Spark으로 평가한 결과 단일 시스템 대비 하둡기반 처리는 625.89%, Spark기반 처리는 870.14%의 성능향상을 확인하였으며, 하둡 기반과 Spark기반의 비교에서는 대용량 데이터 셋을 처리 할수록 Spark기반의 성능향상율이 높아짐을 확인하였다.