Search : [ author: 박성호 ] (2)

Reference Image-Based Contrastive Attention Mechanism for Printed Circuit Board Defect Classification

Sung Ho Park, Seung Hoon Lee

http://doi.org/10.5626/JOK.2025.52.1.70

Effective classification of defects in Printed Circuit Boards (PCBs) is critical for ensuring product quality. Traditional approaches to PCB defect detection have primarily relied on single-image analysis or failed to adequately address alignment issues between reference and test images, leading to reduced reliability and precision in defect detection. To overcome these limitations, this study aimed to introduce a novel deep image comparison method that could incorporate contrastive loss functions to improve image alignment with a contrastive attention mechanism to focus the model on areas with a higher likelihood of defects. Experiments conducted on actual PCB data demonstrated that the proposed method achieved superior classification performance, even with limited data, highlighting its potential to significantly enhance the reliability of PCB defect detection and address existing challenges in the field.

Proposal of An Intent Classification Method Using Text Augmentation Techniques and Transfer Learning

Huiwon Lee, Sungho Park, Chaewon Lee, Seunghyun Lee, Kangbae Lee

http://doi.org/10.5626/JOK.2024.51.2.141

Intent classification is the first step of task-directed chatbots and is an important phase in performance improvement. However, task-oriented chatbots are limited by a lack of data for specific domains. The purpose of this study is to solve the problem of data limitation by utilizing text augmentation techniques and transfer learning. Previously, studies using transfer learning and text augmentation techniques existed, but it was difficult to find studies applicable to various domains. This study proposes a text augmentation technique and transfer learning method applicable to various domains. For the experiment, less than 10,000, 20,000, and 30,000 data were constructed according to the ratio of actual utterance intentions in 8 domains. As a result of the experiment, although differences existed depending on the domain, it was confirmed that the method proposed in this study was excellent for all 8 domains. It was confirmed that the accuracy for the 8 domains improved by 10%, 3.4%, and 1.9%, respectively on average with the decreasing size of the training data, and the F1-Score improved by 30%, 12%, and 7.5%, respectively on average.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

Editorial Office

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr