검색 : [ author: 박진원 ] (1)

Transient EMG 신호를 이용한 손가락의 움직임 추정

박진원, 최계원

http://doi.org/10.5626/JOK.2022.49.2.157

본 논문에서는 근전도 신호를 기반으로 손가락의 움직임을 추측하기 위한 딥 러닝 모델을 제안한다. 우리는 또한 모델의 정확도를 평가하고 분석하였다. 우리는 의료 영상의 분석에 널리 이용되는 U-Net의 구조를 모델에 적용하였다. 일반적으로 U-Net은 2차원 영상 처리에 주로 사용된다. 그러나 본 논문에서는 8채널 1차원 시계열 근전도 데이터를 입력으로 사용하고 그 결과로 손가락 움직임에 대한 정보를 얻는다. 8,000개의 동작으로 구성된 데이터 세트를 획득했으며, 이는 훈련 데이터 세트와 평가 데이터 세트로 나누어진다. 모델의 예측 정확도는 약 89.32%이다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr