Digital Library[ Search Result ]
A Prediction-based Dynamic Component Offloading Framework for Mobile Cloud Computing
http://doi.org/10.5626/JOK.2018.45.2.141
Nowadays, mobile computing has become a common computing paradigm that provides convenience to people’s daily life. More and more useful mobile applications’ appearance makes it possible for a user to manage personal schedule, enjoy entertainment, and do many useful activities. However, there are some inherent defects in a mobile device that battery constraints and bandwidth limitations. These drawbacks get a user into troubles when to run computationally intensive applications. As a remedy scheme, component offloading makes room for handling mentioned issues via migrating computationally intensive component to the cloud server. In this paper, we will present the predictive offloading method for efficient mobile cloud computing. At last, we will present experiment result for validating applicability and practicability of our proposal.
A Conceptual Framework for Aging Diagnosis Using IoT Devices
Jae Yoo Lee, Jin Cheul Park, Soo Dong Kim
With the emergence of Internet-of-Things (IoT) computing, it has become possible to acquire users’ health-related contexts from various IoT devices and to diagnose their biological aging through analysis of the IoT health contexts. However, previous work on methods of aging diagnosis used a fixed list of aging diagnosis factors, making it difficult to handle the variability of users’ IoT health contexts and to dynamically adapt the addition and deletion of aging diagnosis factors. This paper proposes a design and methods for a dynamically adaptable aging diagnosis framework that acquires a set of IoT health contexts from various IoT devices based on a set of aging diagnosis factors of the user. By using the proposed aging diagnosis framework, aging diagnosis methods can be applied without considering the variability of IoT health contexts and aging diagnosis factors can be dynamically added and deleted.
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr