검색 : [ author: 배석현 ] (4)

무인기와 주변 개체간의 위협 관련 관계추론을 통한 무인기 상황인지 기법

배석현, 전명중, 박현규, 박영택, 윤형식, 김윤근

http://doi.org/10.5626/JOK.2019.46.2.141

무인기의 기술적 성능이 향상됨에 따라 무인기가 각종 위험을 스스로 인지하고 회피하면서 목표 지역에 접근하기 위해 지능적으로 UAV의 상황을 분석하고 이해하려는 연구가 활발하다. 무인기의 임무를 달성하기 위해서는 빠른 상황 판단과 함께 정확한 상황 판단이 요구된다. 이를 위해 본 논문에서는 3단계의 접근방식을 통하여 무인기와 인지된 주변 개체 간의 위협 관련 관계를 추론하고 이를 기반으로 무인기의 상황을 추상화된 정보로 제공하는 방법을 제안한다. 첫 번째 단계는 무인기가 인지한 개체 데이터를 온톨로지 및 규칙 추론에 활용하기 위해 개체화 하는 것이다. 두 번째 단계는 개체화된 데이터에 대해 개체 간 위협과 관련된 추론의 우선순위를 정의하고 이들 간의 관계 추론을 한다. 마지막으로 현재 추론된 관계들과 과거에 추론된 관계들 간의 연관성을 고려한 관계 추론을 통하여 상황을 인지한다. 제안한 방식의 성능 평가를 위해 가상의 무인기 환경 시뮬레이터를 구축하고 순차적인 5개의 무인기 이동 포인트 경로를 무작위로 1,000번 생성하여 실험하였다. 무인기 이동 경로에서 8종류의 개체를 인지할 수 있으며, 10종류의 관계를 추론할 수 있다. 그리고 전체적인 추론 인지 성능은 평균 91% 이다.

생활 패턴 인지를 위한 이벤트 연산 기반 예측 모델 학습 기법

배석현, 방성혁, 박현규, 전명중, 김제민, 박영택

http://doi.org/10.5626/JOK.2018.45.5.466

기계 학습 알고리즘의 발전에 따라 다양한 영역의 데이터에 대한 분석 및 결과를 예측하는 연구들이 진행되고 있다. 그러나 기존의 데이터 의존적인 기계 학습 기반의 의도 인지 방법론은 노이즈 처리에 대한 어려움이 존재하고, 복합적으로 발생할 수 있는 행위 의도에 대한 인지에서 한계점을 가진다. 본 한계점을 극복하기 위해 본 논문에서는 이벤트 연산(Event Calculus)을 기반으로 3단계의 행위 의도인지 방법론을 제안한다. 첫 번째 단계는 시퀀스 데이터가 어떤 의도인지를 판별하는 의도 추론 단계이다. 두 번째 단계는 새롭게 추론된 행위 의도를 기반으로 이전부터 유지됐던 행위 의도와의 병행 가능 여부를 판단하는 충돌 해결(Conflict Resolution) 단계이다. 마지막으로 많은 노이즈로 인해 발생되는 오류를 추론된 행위 의도들에 반영하는 노이즈 감소(Noise Reduction) 단계로 진행된다. 이벤트 연산 기법에 대한 성능 평가를 위해 실제 수집한 데이터를 재구축한 혼합 가우시안 모델과 휴리스틱 규칙 기반의 범용 데이터 생성 기법을 제안한다. 5개의 의도로 이루어진 약 13시간의 시퀀스 데이터 300개를 사용하여 이벤트 연산의 성능을 측정하였고, 각 의도에 대해 이벤트 연산의 예측 결과와 실제 확률 모델이 평균 89.3%의 일치
도를 보였다.

순환신경망 기반의 사용자 의도 예측 모델

방성혁, 배석현, 박현규, 전명중, 김제민, 박영택

http://doi.org/10.5626/JOK.2018.45.4.360

기계 학습 모델 구축을 통한 인간의 의도 예측은 기존에도 제공되어 왔으나, 특정 행위가 발생하는 시점으로부터 먼 과거의 정보를 반영한 의도 예측이 어렵다는 단점이 존재했다. 이 문제점의 극복을 위해, 본 논문에서는 순환 신경망(RNN – Recurrent Neural Network) 기반의 행위 의도 예측 모델 학습 기법을 제안한다. 순환 신경망 모델은 시계열(Time-Series) 데이터의 패턴을 분석하여 과거의 시점이 반영된 예측 결과를 생성한다. 본 논문이 제안하는 순환 신경망 기반의 의도 예측 모델은 시간, 공간, 행위, 물체, 의도로 구성된 생활 데이터 시퀀스를 바탕으로 사용자의 의도를 예측할 수 있도록 학습된다. 순환 신경망의 각 노드는 의도 예측 모델이 먼 과거의 데이터 시퀀스를 고려하여 의도를 예측 할 수 있도록 LSTM(Long-Short Term Memory) Cell로 구성하였다. 순환 신경망 기반의 의도 예측 모델의 성능 평가를 위해, 본 논문에서는 행위 의도에 대한 가중치 그래프 기반 데이터 생성기를 구축하여 실제 실내에서 발생하는 인간 활동에 가까운 데이터를 자동으로 생성하여 실험에 사용했다. 총 23,000개의 데이터가 의도 모델 학습과 검증에 사용되었으며, 학습된 모델의 의도 예측 정확도 측정 실험을 한 결과로 평균 90.52%의 예측 정확도를 보였다.

인메모리 기반의 클러스터 환경에서 분산 병렬 SWRL 추론에 대한 연구

이완곤, 배석현, 박영택

http://doi.org/10.5626/JOK.2018.45.3.224

최근 들어 대용량 온톨로지를 사용하여 분산 환경에서 사용자 정의 규칙을 기반으로 하는 SWRL 추론엔진에 대한 연구가 다양하게 진행되고 있다. 스키마를 기반으로 하는 공리 규칙과 다르게 SWRL 규칙들은 미리 효율적인 추론 순서를 정의할 수 없다. 또한 불필요한 반복과정으로 인해 많은 양의 네트워크 셔플링이 발생한다. 이러한 문제점들을 해결하기 위해서 본 논문에서는 Map-Reduce 알고리즘과 인메모리 기반의 분산처리 프레임워크를 활용하여 동시에 여러 규칙을 추론할 수 있고, 클러스터의 노드간에 발생하는 데이터 셔플링의 양을 최소화할 수 있는 방법을 제안한다. 제안하는 방법의 성능을 측정하기 위해 약 2억 트리플로 구성된 WiseKB 온톨로지와 36개의 사용자 정의 규칙을 사용하여 실험을 진행했고 약 16분이 소요되었다. 또한 LUBM 벤치 마크 데이터를 이용한 비교 실험에서 기존 연구보다 2.7배 높은 성능을 보였다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr