Digital Library[ Search Result ]
AttDRP: Attention Mechanism-based Model for Anti-Cancer Drug Response Prediction
Jonghwan Choi, Sangmin Seo, Sanghyun Park
http://doi.org/10.5626/JOK.2021.48.6.713
Resistance to anti-cancer drugs makes chemotherapy ineffective for cancer patients. Drug resistance is caused by genetic alterations in cancer cells. Many studies have investigated drug responses of diverse cancer cell lines to various anti-cancer drugs to understand drug response mechanisms. Existing studies have proposed machine learning models for drug response prediction to find effective anti-cancer drugs. However, currently there are no models to learn the relationship between anticancer drugs and genes to improve the prediction accuracy. In this paper, we proposed a predictive model AttDRP that could identify important genes associated with anti-cancer drugs and predict drug responses based on identified genes. AttDRP exhibited better predictive accuracy than existing models and we found that the attention scores of AttDRP could be effective tools to analyze molecular structures of anticancer drugs. We hope that our proposed method would contribute to the development of precision medicine for effective chemotherapy. Resistance to anti-cancer drugs makes chemotherapy ineffective for cancer patients. Drug resistance is caused by genetic alterations in cancer cells. Many studies have investigated drug responses of diverse cancer cell lines to various anti-cancer drugs to understand drug response mechanisms. Existing studies have proposed machine learning models for drug response prediction to find effective anti-cancer drugs. However, currently there are no models to learn the relationship between anticancer drugs and genes to improve the prediction accuracy. In this paper, we proposed a predictive model AttDRP that could identify important genes associated with anti-cancer drugs and predict drug responses based on identified genes. AttDRP exhibited better predictive accuracy than existing models and we found that the attention scores of AttDRP could be effective tools to analyze molecular structures of anticancer drugs.
Prediction of Compound-Protein Interactions Using Deep Learning
http://doi.org/10.5626/JOK.2019.46.10.1054
Characterizing the interactions between compounds and proteins is an important process for drug development and discovery. Structural data of proteins and compounds are used to identify their interactions, but those structural data are not always available, and the speed and accuracy of the predictions made in this way ware limited due to the large number of calculations involved. In this paper, compound-protein interactions were predicted using S2SAE (Sequence-To-Sequence Auto-Encoder), which is composed of a sequence-to-sequence algorithm used in machine translation as well as an auto-encoder for effective compression of the input vector. Compared to the existing method, the method proposed in this paper uses fewer features of protein-compound complex and also show higher predictive accuracy.
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr