Digital Library[ Search Result ]
Feature Extraction to Detect Hoax Articles
Readership of online newspapers has grown with the proliferation of smart devices. However, fierce competition between Internet newspaper companies has resulted in a large increase in the number of hoax articles. Hoax articles are those where the title does not convey the content of the main story, and this gives readers the wrong information about the contents. We note that the hoax articles have certain characteristics, such as unnecessary celebrity quotations, mismatch in the title and content, or incomplete sentences. Based on these, we extract and validate features to identify hoax articles. We build a large-scale training dataset by analyzing text keywords in replies to articles and thus extracted five effective features. We evaluate the performance of the support vector machine classifier on the extracted features, and a 92% accuracy is observed in our validation set. In addition, we also present a selective bigram model to measure the consistency between the title and content, which can be effectively used to analyze short texts in general.
Sensor Selection Strategies for Activity Recognition in a Smart Environment
The recent emergence of smart phones, wearable devices, and even the IoT concept made it possible for various objects to interact one another anytime and anywhere. Among many of such smart services, a smart home service typically requires a large number of sensors to recognize the residents’ activities. For this reason, the ideas on activity recognition using the data obtained from those sensors are actively discussed and studied these days. Furthermore, plenty of sensors are installed in order to recognize activities and analyze their patterns via data mining techniques. However, if many of these sensors should be installed for IoT smart home service, it raises the issue of cost and energy consumption. In this paper, we proposed a new method for reducing the number of sensors for activity recognition in a smart environment, which utilizes the principal component analysis and clustering techniques, and also show the effect of improvement in terms of the activity recognition by the proposed method.
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr