검색 : [ author: 손경아 ] (2)

낚시성 인터넷 신문기사 검출을 위한 특징 추출

허성완, 손경아

http://doi.org/

스마트 기기의 발달로 많은 사람들이 인터넷 신문기사를 이용하고 있다. 하지만 인터넷 언론사 간의 치열한 경쟁으로 조회수를 올리기 위한 낚시성 기사가 범람하고 있다. 낚시성 신문기사는 제목을 통해 올바른 기사의 줄거리가 제공되지 않았을 뿐만 아니라, 독자로 하여금 잘못된 내용을 떠올리게 한다. 낚시성 신문기사는 핵심에서 벗어난 유명인사 인용, 애매한 문장의 마무리, 제목과 내용의 불일치 등의 특징을 갖는다. 본 논문에서는 이러한 낚시성 기사를 분류하기 위한 특징을 추출하고 성능을 검증해 본다. 기사에 달린 댓글의 키워드를 활용하여 대용량 학습데이터를 생성하고 이를 기반으로 다섯 가지 분류 특징을 추출하였다. 추출된 특징들은 서포트 벡터 머신 분류기를 이용한 실험에서 92%의 정확도를 보여 낚시성 인터넷 신문기사를 분류하는데 적합하다고 판단된다. 뿐만 아니라 제목과 본문의 일관성을 측정하기 위한 전처리 방법으로 고안한 선택적 바이그램 모델은 낚시성 인터넷 신문기사 분류 외에도 일반적인 단문 분석을 위한 전처리 방법으로 유용할 것으로 기대된다.

스마트 환경에서 행위 인식을 위한 센서 선정 기법

구성도, 손경아

http://doi.org/

스마트 폰의 출현에 이어 최근 웨어러블 기기와 IoT 개념의 등장으로 언제 어디서든 여러 다양한 객체들 간의 상호작용이 가능하게 되었다. 그 중 홈 네트워크를 이용한 스마트 홈 서비스를 위해서는 수많은 센서들이 필요하다. 이러한 스마트 환경에서의 센서 데이터를 이용하여 거주자의 행위를 인식하는 연구가 활발히 진행되고 있다. 각종 센서 데이터 마이닝 기법을 통한 행위 인식 및 패턴 분석을 위해 많은 센서가 사용되지만, IoT 스마트 홈 서비스를 위해 수많은 센서들이 설치되어야 한다면 비용의 문제와 에너지 소모의 문제를 야기할 것이다. 본 논문에서는 스마트 환경에서 주성분 분석과 클러스터링 기법을 활용하여 적은 수의 센서를 선정하는 방식을 제안하며, 이에 따른 거주자 행위 인식률의 개선 효과를 보인다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr