디지털 라이브러리[ 검색결과 ]
검색 : [ author: 이석우 ] (1)
Convolutional Neural Network를 이용한 웹 어플리케이션 공격 탐지 기법
http://doi.org/10.5626/JOK.2018.45.7.744
웹 어플리케이션 공격이 급격하게 늘면서 기존의 기법들만으로는 이를 탐지하는 것이 한계가 있어, 기계학습 기반의 탐지 기법이 연구되기 시작하였다. 기계학습을 활용한 기존 기법은 공격 탐지를 위해 적절한 특징(feature)을 선정해야 하는 어려움이 있으며, 새로운 공격 패턴이 등장할 경우 이에 적합하도록 특징을 재선정해야 할 경우도 발생한다. 본 논문에서는 HTTP 트래픽을 구성하는 입력이 허용되는 문자에 대한 제한 없이 문자 단위로 16진수 변환한 후 이미지화하고, 이를 입력으로 하는 convolutional neural network을 통해 웹 어플리케이션 공격을 탐지하는 기법을 제안한다. 제안 기법은 별도의 특징 선정 없이 지도학습을 통해 이미지화 된 HTTP 트래픽을 학습하며, 기존의 기계학습 기법보다 최대 84.4%까지 공격 탐지 오류율 성능을 향상할 수 있음을 보였다.