Digital Library[ Search Result ]
Analysis of Adversarial Learning-Based Deep Domain Adaptation for Cross-Version Defect Prediction
Jiwon Choi, Jaewook Lee, Duksan Ryu, Suntae Kim
http://doi.org/10.5626/JOK.2023.50.6.460
Software defect prediction is a helpful technique for effective testing resource allocation. Software cross-version defect prediction reflects the environment in which the software is developed in a continuous version, with software modules added or deleted through a version update process. Repetition of this process can cause differences in data distribution between versions, which can negatively affect defect prediction performance. Deep domain adaptation(DeepDA) techniques are methods used to reduce distribution difference between sources and target data in the field of computer vision. This paper aims to reduce difference in data distribution between versions using various DeepDA techniques and to identify techniques with the best defect prediction performance. We compared performance between deep domain adaptation techniques (i.e., Domain-Adversarial Neural Network (DANN), Adversarial Discriminator Domain Apaptation (ADDA), and Wasserstein Distance Guided Representation Learning (WDGRL)) and identified performance differences according to the pair of source data. We also checked performance difference according to the ratio of target data used in the learning process and performance difference in terms of hyperparameter setting of the DANN model. Experimental results showed that DANN was more suitable for cross-version defect prediction environments. The DANN model performed the best when using all previous versions of data except the target version as a source. In particular, it showed the best performance when setting the number of hidden layers of the DANN model to 3. In addition, when applying the DeepDA technique, the more target data used in the learning process, the better the performance. This study suggests that various DeepDA techniques can be used to predict software cross-version defects in the future.
Identification of Generative Adversarial Network Models Suitable for Software Defect Prediction
Jiwon Choi, Jaewook Lee, Duksan Ryu, Suntae Kim
http://doi.org/10.5626/JOK.2022.49.1.52
Software Defect Prediction(SDP) helps effectively allocate quality assurance resources which are limited by identifying modules that are likely to cause defects. Software defect data suffer from class imbalance problems in which there are more non-defective instances than defective instances. In most machine learning methods, the defect prediction performance is degraded when there is a disproportionate number of instances belonging to a particular class. Therefore, this research aimed to solve the class imbalance problem and improve defect prediction performance by using a Generative Adversarial Network(GAN) model. To this end, we compared different kinds of GAN models for their suitability for SDP and checked the applicability of GAN models that were not applied in the related work. In our study, Vanilla-GAN(GAN), Conditional GAN (cGAN), and Wasserstein GAN (WGAN) models which were initially proposed for image generation were adapted for software defect prediction. Then those modified models were compared with Tabular GAN(TGAN) and Modeling Tabular data using Conditional GAN(CTGAN). Our experimental results showed that the CTGAN model is suitable for SDP data. We also conducted a sensitivity analysis examining which hyper-parameter values of CTGAN increase the recall rate and lower the probability of false alarm (PF). Our experimental results indicated that the hyper-parameters should be adjusted according to the dataset. We expect that our proposed approach can help effectively allocate limited resources by improving the performance of SDP.
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr