검색 : [ author: 이충연 ] (2)

동적 메모리 네트워크의 시간 표현과 데이터 확장을 통한 질의응답 최적화

한동식, 이충연, 장병탁

http://doi.org/

질의응답 문제를 인공지능 모델을 통해 해결하는 연구는 메모리 네트워크의 등장으로 인해 방법론의 변화를 맞이하고 있으며, 그 중 동적 메모리 네트워크(DMN)는 인간 기억 체계에 착안하여 신경망 기반의 주의 기제를 적용하면서, 질의응답에서 일어나는 각 인지 과정들을 모듈화 했다는 특징들을 갖는다. 본 연구에서는 부족한 학습 데이터를 확장 시키고, DMN이 내포하고 있는 시간 인식의 한계를 개선해 정답률을 높이고자 한다. 실험 결과, 개선된 DMN은 1K-bAbI 문제의 테스트 데이터에서 89.21%의 정답률과, 95%를 질의응답 통과의 기준의 정답률으로 가정할 때 12개의 과제를 통과하는 성능을 보여 정확도 면에서 기존의 DMN에 비해 13.5%p 만큼 더 높고, 4개의 과제를 추가로 통과하는 성능 향상을 보여주었다. 또한 뒤이은 실험을 통해, 데이터 내에서 비슷한 의미 구조를 가지는 단어들은 벡터 공간상에서 강한 군집을 이룬다는 점과, 일화 기억 모듈 통과 횟수와 근거 사실 수의 성능에 큰 영향을 미치는 직접적인 연관성을 발견하였다.

웨어러블 센서를 이용한 사건인지 기반 일상 활동 예측

이충연, 곽동현, 이범진, 장병탁

http://doi.org/

실제 환경에서 사람의 일상적인 활동을 학습하는 기술은 스마트 비서나 자율지능 로봇과 같은 인지 지능 시스템 개발을 위해 필요한 핵심 기술이다. 일상을 예측하는 대다수의 연구들은 센서 데이터의 패턴과 일상 활동 사이의 직접적인 상관관계를 탐색하는 것에 집중하였다. 하지만 일상에서의 인간 활동은 하나의 레이블로 표현하기 어려운 다수의 사건 집합이고 또한 서술 가능한 특성을 지니고 있다. 본고에서는 일상을 구성하는 사건 요소들을 우선 인식하고, 이후 일상 활동을 학습 및 예측하는 방법을 제안한다. 제안하는 방법은 개인의 일상에서 웨어러블 장치와 스마트폰으로부터 수집된 일인칭 시점의 멀티 센서 데이터로부터 위치 좌표, 장면 영상, 그리고 신체적 움직임에 기인한 사건 요소들을 각각 인식한 뒤, 이 정보들이 특정 활동 내역에 따라 조합되는 규칙을 학습하여 최종적으로 사용자의 일상 활동을 예측한다. 두명의 실험 참가자가 각각 2주간 수집한 센서 데이터를 이용하여 실험한 결과는 제안한 방법이 센서 데이터로부터 추출된 특징을 일차적으로 사용하여 분류하는 기존의 방법과 비교하여 향상된 성능을 보였다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr