검색 : [ author: 이호경 ] (2)

위키피디아 기반의 효과적인 개체 링킹을 위한 NIL 개체 인식과 개체 연결 중의성 해소 방법

이호경, 안재현, 윤정민, 배경만, 고영중

http://doi.org/10.5626/JOK.2017.44.8.813

개체 링킹은 입력된 질의에 존재하는 개체를 표현한 개체 표현(entity mention)을 지식베이스에 존재하는 개체와 연결하여 의미를 파악하는 연구이다. 개체 링킹에 관한 연구는 지식 베이스 구축 문제, 다중 표현 문제, 개체 연결 중의성 문제, NIL 개체 인식 문제가 존재한다. 본 연구에서는 지식 베이스 구축 문제와 다중 표현 문제를 해결하기 위해 위키피디아를 기반으로 개체 이름 사전을 구축한다, 또한, 문맥 유사도, 의미적 관련성, 단서 단어 점수, 개체 표현의 개체명 타입 유사도, 개체 이름 매칭 점수, 개체인기도 점수 자질들을 기반으로 SVM(support vector machine)을 학습하여, NIL 개체를 인식하는 문제와 개체 연결 중의성을 해소하는 방법을 제안한다. 구축한 지식 베이스를 기반으로 제안한 두 방법을 순차적으로 적용하였을 때 좋은 개체 링킹 성능을 얻었다. 개체 링킹 시스템의 성능은 NIL 개체 인식 성능이 83.66%, 중의성 해소 성능이 90.81%의 F1 점수를 보였다.

비격식 문서 분류 성능 개선을 위한 LDA 단어 분포 기반의 자질 확장

이호경, 양선, 고영중

http://doi.org/

트위터, 페이스북, 온라인 고객 리뷰 등은 신문기사처럼 정제된 글이 아닌 자유롭게 기술되는 비격식(informal) 텍스트 문서에 속한다. 이러한 비격식 문서에서 일관된 규칙이나 패턴을 찾는 일은 격식(formal) 문서 경우에 비해 용이하지 않기 때문에, 비격식 문서 분석을 위해서는 성능 개선을 위한 추가적인 접근 방법 필요다고 판단된다. 본 연구에서는 대표적 비격식 문서인 트위터 데이터를 열 가지 카테고리로 분류함에 있어 LDA(Latent Dirichlet allocation) 단어 분포를 사용하여 자질(feature)을 교정하고 확장한다. 토픽별로 상위에 랭크된 단어 자질들을 기반으로 다른 단어 자질들을 분해 및 병합하는 방식으로 유용한 자질 집합을 반복적으로 확장시킨다. 이렇게 생성된 자질로 문서 분류를 수행한 결과 자질 확장 이전에 비해 마이크로 평균 F1-score 7.11%p의 성능 개선 효과를 확인할 수 있었다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr